Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation
نویسندگان
چکیده
منابع مشابه
Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of t...
متن کاملThermal conductivity calculation of magnetite using molecular dynamics simulation
In the current research, thermal conductivity of magnetite (Fe3O4) has been calculated using molecular dynamic simulation. The rNEMD Molecular Dynamics Method provided in the LMMPS package is used for the simulation of the thermal conductivity. The effects of magnetite layer size and temperature on the thermal conductivity have been investigated. The numerical results have...
متن کاملLattice thermal conductivity of nanoporous Si: Molecular dynamics study
Lattice thermal conductivity !l of Si with nanometer-sized pores along the #001$ direction is calculated as a function of pore diameter !dp" and pore spacing !ds" by employing a molecular dynamics approach. Our results show that !l across pores is smaller than the bulk value by over two orders of magnitude at room temperature, and that it decreases !increases" as a function of dp !ds" for fixed...
متن کاملMolecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons
Classical molecular dynamics based on the Brenner potential and Nosé– Hoover thermostat has been used to study the thermal conductivity and thermal rectification (TR) of graphene nanoribbons. An appreciable TR effect in triangular and trapezoidal nanoribbons was found. The TR factor is over 20 % even for 23 nm long monolayer triangular nanoribbons. The TR in graphene nanoribbons may enable nove...
متن کاملMolecular Dynamics Simulation of Thermal Conduction in Nanoporous Thin Films
Molecular dynamics simulations of thermal conduction in nanoporous thin films are performed. Thermal conductivity displays an inverse temperature dependence for films with small pores and a much less pronounced dependence for larger pores. Increasing porosity reduces thermal conductivity, while pore shape has little effect except in the most anisotropic cases. The pores separate the film into l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Heat and Mass Transfer
سال: 2020
ISSN: 0017-9310
DOI: 10.1016/j.ijheatmasstransfer.2019.118884